
Channel Access Client APIs

Andrew Johnson — Computer Scientist, AES-SSG

Includes material by Kay Kasemir, ORNL

AES Basic EPICS Training — January 2011 — CA Client APIs

2

Channel Access

■ The main programming interface for writing Channel Access clients
is the C library that comes with EPICS base
● Internally uses C++, but API is pure C

■ Almost all CA client interfaces in other languages call the C library
● Main exception: Pure Java library ‘CAJ’ (may still have some issues)

■ Documentation:
● EPICS R3.14 Channel Access Reference Manual by Jeff Hill et al.
● CA - Perl 5 interface to EPICS Channel Access by Andrew Johnson
● In <base>/html, or from the EPICS web site

■ This lecture covers
● Fundamental API concepts (using Perl)
● Template examples in C, discussion of Matlab and Java

AES Basic EPICS Training — January 2011 — CA Client APIs

3

Why teach the Perl API?

■ Simpler, easier to learn than C
■ Same principles, less code required

■ Perl 5 API calls C interface internally
● Builds on most Unix-like workstation platforms (not Windows)

AES Basic EPICS Training — January 2011 — CA Client APIs

4

Search and Connect to a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

printf "PV: %s\n", $chan->name;
printf " State: %s\n", $chan->state;
printf " Host: %s\n", $chan->host_name;
my @access = ('no ', '');
printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
printf " Data type: %s\n", $chan->field_type;
printf " Element count: %d\n", $chan->element_count;

■ This is the basic cainfo program in Perl (without error checking)

AES Basic EPICS Training — January 2011 — CA Client APIs

5

Get and Put a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "Old Value: %s\n", $chan->value;

$chan->put($ARGV[1]);
CA->pend_io(1);

$chan->get;
CA->pend_io(1);
printf "New Value: %s\n", $chan->value;

■ This is the basic caput program in Perl (without error checking)

AES Basic EPICS Training — January 2011 — CA Client APIs

6

Monitor a PV

use lib '/path/to/base/lib/perl';
use CA;

my $chan = CA->new($ARGV[0]);
CA->pend_io(1);

$chan->create_subscription('v', \&val_callback);
CA->pend_event(0);

sub val_callback {
 my ($chan, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $chan->name;
 printf " Value: %s\n", $data;
 }
}

■ This is a basic camonitor program in Perl (without error checking)

AES Basic EPICS Training — January 2011 — CA Client APIs

7

Error Checking

■ What happens if the PV search fails, e.g. the IOC isn't running, or it's
busy and takes longer than 1 second to reply?
● CA->pend_io(1) times out

● CA library throws a Perl exception (die)
● Program exits after printing:

□ ECA_TIMEOUT - User specified timeout on IO operation expired at test.pl line 5.

■ We can trap the Perl exception using
● eval {CA->pend_io(1)};

if ($@ =~ m/^ECA_TIMEOUT/) { ... }

■ How can we write code that can recover from failed searches and
continue doing useful work?

AES Basic EPICS Training — January 2011 — CA Client APIs

8

Event-driven Programming

■ First seen when setting up the CA monitor:
● $chan->create_subscription('v', \&callback);

CA->pend_event(0);

● The CA library executes our callback subroutine whenever the server
provides a new data value for this channel

● The CA->pend_event() routine must be running for the library to execute
callback routines
□ The Perl CA library is single threaded
□ Multi-threaded C programs can avoid this requirement

■ Most CA functionality can be event-driven

AES Basic EPICS Training — January 2011 — CA Client APIs

9

Event-driven PV Search and Connect

use lib '/path/to/base/lib/perl';
use CA;

my @chans = map {CA->new($_, \&conn_callback)} @ARGV;
CA->pend_event(0);

sub conn_callback {
 my ($chan, $up) = @_;
 printf "PV: %s\n", $chan->name;
 printf " State: %s\n", $chan->state;
 printf " Host: %s\n", $chan->host_name;
 my @access = ('no ', '');
 printf " Access rights: %sread, %swrite\n",
 $access[$chan->read_access], $access[$chan->write_access];
 printf " Data type: %s\n", $chan->field_type;
 printf " Element count: %d\n", $chan->element_count;
}

■ The cainfo program using callbacks

AES Basic EPICS Training — January 2011 — CA Client APIs

10

Event-driven PV Monitor

use lib '/path/to/base/lib/perl';
use CA;
my @chans = map {CA->new($_, \&conn_cb)} @ARGV;
CA->pend_event(0);
sub conn_cb {
 my ($ch, $up) = @_;
 if ($up && ! $monitor{$ch}) {
 $monitor{$ch} = $ch->create_subscription('v', \&val_cb);
 }
}
sub val_cb {
 my ($ch, $status, $data) = @_;
 if (!$status) {
 printf "PV: %s\n", $ch->name;
 printf " Value: %s\n", $data;
 }
}

■ The camonitor program using callbacks

AES Basic EPICS Training — January 2011 — CA Client APIs

11

Data Type Requests

■ Most data I/O routines handle data type automatically
● $chan->get fetches one element in the channel’s native type

□ Value is returned by $chan->value

□ Arrays are not supported, no type request possible

● $chan->get_callback(SUB) fetches all elements in the channel’s native
data type
□ Optional TYPE and COUNT arguments to override

● $chan->create_subscription(MASK, SUB) requests all elements in the
channel’s native type
□ Optional TYPE and COUNT arguments to override

● $chan->put(VALUE) puts values in the channel’s native type
□ VALUE may be a scalar or an array

● $chan->put_callback(SUB, VALUE) puts values in the channel’s native
data type
□ VALUE may be a scalar or an array

AES Basic EPICS Training — January 2011 — CA Client APIs

12

Specifying Data Types

■ The TYPE argument is a string naming the desired DBR_xxx type
● See the CA Reference Manual for a list

■ The COUNT argument is the integer number of elements

■ If you request an array, the callback subroutine’s $data argument
becomes an array reference

■ If you request a composite type, the callback subroutine’s $data
argument becomes a hash reference
● The hash elements are different according to the type you request
● See the Perl Library documentation for details

AES Basic EPICS Training — January 2011 — CA Client APIs

13

Base caClient template

■ EPICS Base Includes a makeBaseApp.pl template that builds two
basic CA client programs written in C:
● Run this

makeBaseApp.pl t caClient cacApp
make

● Result
bin/linuxx86/caExample <some PV>
bin/linuxx86/caMonitor <file with PV list>

● Then read the sources, compare with the reference manual, and
edit/extend to suit your needs

AES Basic EPICS Training — January 2011 — CA Client APIs

14

CaClient's caExample.c

■ Minimal CA client program
■ Fixed timeout, waits until data arrives
■ Requests everything as ‘DBR_DOUBLE’
● … which results in values of type ‘double’
● See db_access.h header file for all the DBR_… constants and the resulting

C types and structures
● In addition to the basic DBR_type requests, it is possible to request

packaged attributes like DBR_CTRL_type to get { value, units, limits, …}
in one request

AES Basic EPICS Training — January 2011 — CA Client APIs

15

Excerpt from db_access.h
/* values returned for each field type

…

 * DBR_DOUBLE returns a double precision floating point number

…

 * DBR_CTRL_DOUBLE returns a control double structure (dbr_ctrl_double)

 */

…

/* structure for a control double field */

struct dbr_ctrl_double{

 dbr_short_t status; /* status of value */

 dbr_short_t severity; /* severity of alarm */

 dbr_short_t precision; /* number of decimal places */

 dbr_short_t RISC_pad0; /* RISC alignment */

 char units[MAX_UNITS_SIZE]; /* units of value */

 dbr_double_t upper_disp_limit; /* upper limit of graph */

 dbr_double_t lower_disp_limit; /* lower limit of graph */

 dbr_double_t upper_alarm_limit;

 dbr_double_t upper_warning_limit;

 dbr_double_t lower_warning_limit;

 dbr_double_t lower_alarm_limit;

 dbr_double_t upper_ctrl_limit; /* upper control limit */

 dbr_double_t lower_ctrl_limit; /* lower control limit */

 dbr_double_t value; /* current value */

};

AES Basic EPICS Training — January 2011 — CA Client APIs

16

caClient's caMonitor.c

■ Better CA client program
● Registers callbacks to get notified when connected or disconnected
● Subscribes to value updates instead of waiting
● … but still uses one data type (DBR_STRING) for everything

AES Basic EPICS Training — January 2011 — CA Client APIs

17

Ideal CA client?

■ Register and use callbacks for everything
● Event-driven programming; polling loops or fixed time outs

■ On connection, check the channel’s native type
● Limit the data type conversion burden on the IOC

■ Request the matching DBR_CTRL_type once
● this gets the full channel detail (units, limits, …)

■ Then subscribe to DBR_TIME_type for time+status+value updates
● Now we always stay informed, yet limit the network traffic
● Only subscribe once at first connection; the CA library automatically re-

activates subscriptions after a disconnect/reconnect

■ This is what MEDM, StripTool, etc do
● Quirk: They don't learn about run-time changes of limits, units, etc.

□ Recent versions of CA support DBE_PROPERTY monitor event type
□ This solves that issue

AES Basic EPICS Training — January 2011 — CA Client APIs

18

Side Note: SNL just to get CAC help

■ This piece of SNL handles all the connection management and data
type handling:
● double value;

assign value to "fred";
monitor value;

■ Extend into a basic 'camonitor':
● evflag changed;

sync value changed;

ss monitor_pv
{

state check
{
 when (efTestAndClear(changed))
 {
 printf("Value is now %g\n", value);
 } state check
}

}

AES Basic EPICS Training — January 2011 — CA Client APIs

19

Quick Hacks, Scripts

■ In many cases, scripts written in bash/perl/python/php can just
invoke the command-line ‘caget’ and ‘caput’ programs

■ Especially useful if you only need to read/write one PV value and not
subscribe to value updates

■ CA Client library bindings are available for Perl, Python & PHP
● Perl bindings are included in EPICS Base (not on MS Windows)
● You have to find, build and update them for Python and PHP

□ Your script may be portable, but you still have to install the CAC-for-p* binding
separately for Linux, Win32, MacOS…

AES Basic EPICS Training — January 2011 — CA Client APIs

20

Quick Perl Example

caget: Get the current value of a PV

Argument: PV name

Result: PV value

sub caget {

 my ($pv) = @_;

 open(my $F, "|", "caget t $pv") or die "Cannot run 'caget'\n";

 $result = <$F>;

 close $F;

 chomp $result;

 return $result;

}

Do stuff with PVs

$fred = caget("fred");

$jane = caget("jane");

$sum = $fred + $jane;

printf("Sum: %g\n", $sum);

AES Basic EPICS Training — January 2011 — CA Client APIs

21

Matlab 'MCA' Extension

■ Same setup & maintenance issue as for p/p/p!
● … but may be worth it, since Matlab adds tremendous number crunching

and graphing.

■ Initial setup
● Get MCA sources (see links on EPICS website)
● Read the README, spend quality time with MEX

■ Assume that's done by somebody else
● ‘caget’ from EPICS base works
● Matlab works (try "matlab -nojvm -nodesktop")

■ Do this once:
cd $EPICS_EXTENSIONS/src/mca
source setup.matlab

● … and from now on, Matlab should include MCA support

AES Basic EPICS Training — January 2011 — CA Client APIs

22

MCA Notes

■ Basically, it's a chain of
● pv = mcaopen('some_pv_name');

● value = mcaget(pv);

● mcaput(pv, new_value);

● mcaclose(pv);

■ Your pv is ‘connected’ from ..open to ..close
● When getting more than one sample, staying connected is much more

efficient than repeated calls to ‘caget’

■ Try ‘mca<tab>’ command-line completion to get a list of all the
mca… commands

■ Run ‘help mcaopen’ etc. to get help

AES Basic EPICS Training — January 2011 — CA Client APIs

23

Matlab/MCA Examples

AES Basic EPICS Training — January 2011 — CA Client APIs

24

MCA Value
Subscription

AES Basic EPICS Training — January 2011 — CA Client APIs

25

Java

■ There are now 2 CA bindings, using JNI or pure Java
● Only difference is the initialization, they support the same API
● Usage very much like C interface, “real programming” as opposed to

Matlab, but in the more forgiving Java VM

■ A Java CA example can be found at
● http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz

http://ics-web.sns.ornl.gov/kasemir/train_2006/4_2_Java_CA.tgz

AES Basic EPICS Training — January 2011 — CA Client APIs

26

Acknowledgements

■ Channel Access on every level in detail:
● Jeff Hill (LANL)

■ makeBaseApp.pl
● Ralph Lange (BESSY) and others

■ Perl CA bindings
● Andrew Johnson (APS)

■ MCA
● Andrei Terebilo (SLAC) is the original author,
● Carl Lionberger maintained it for a while (then at SNS)

■ Java CA
● Eric Boucher is the original author (then at APS)
● Matej Sekoranja maintains it, he added the pure java version (Cosylab)

	Slide 1
	Channel Access
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	makeBaseApp.pl
	makeBaseApp's caExample.c
	Excerpt from db_access.h
	makeBaseApp's caMonitor.c
	Ideal CA client?
	Side Note: SNL just to get CAC help
	Quick Hacks, Scripts
	Perl Example
	Matlab 'MCA' Extension
	MCA Notes
	Matlab/MCA Examples
	MCA Value Subscription
	Java
	Acknowledgements

